Skip to content

Home

JavaScript Data Structures - Binary Search Tree

Definition

A binary search tree is a data structure consisting of a set of ordered linked nodes that represent a hierarchical tree structure. Each node is linked to others via parent-children relationship. Any given node can have at most two children (left and right). The first node in the binary search tree is the root, whereas nodes without any children are the leaves. The binary search tree is organized in such a way that for any given node, all nodes in its left subtree have a key less than itself and all nodes in its right subtree have a key greater than itself.

JavaScript Binary Search Tree visualization

Each node in a binary search tree data structure must have the following properties:

The main operations of a binary search tree data structure are:

Implementation

class BinarySearchTreeNode {
  constructor(key, value = key, parent = null) {
    this.key = key;
    this.value = value;
    this.parent = parent;
    this.left = null;
    this.right = null;
  }

  get isLeaf() {
    return this.left === null && this.right === null;
  }

  get hasChildren() {
    return !this.isLeaf;
  }
}

class BinarySearchTree {
  constructor(key, value = key) {
    this.root = new BinarySearchTreeNode(key, value);
  }

  *inOrderTraversal(node = this.root) {
    if (node.left) yield* this.inOrderTraversal(node.left);
    yield node;
    if (node.right) yield* this.inOrderTraversal(node.right);
  }

  *postOrderTraversal(node = this.root) {
    if (node.left) yield* this.postOrderTraversal(node.left);
    if (node.right) yield* this.postOrderTraversal(node.right);
    yield node;
  }

  *preOrderTraversal(node = this.root) {
    yield node;
    if (node.left) yield* this.preOrderTraversal(node.left);
    if (node.right) yield* this.preOrderTraversal(node.right);
  }

  insert(key, value = key) {
    let node = this.root;
    while (true) {
      if (node.key === key) return false;
      if (node.key > key) {
        if (node.left !== null) node = node.left;
        else {
          node.left = new BinarySearchTreeNode(key, value, node);
          return true;
        }
      } else if (node.key < key) {
        if (node.right !== null) node = node.right;
        else {
          node.right = new BinarySearchTreeNode(key, value, node);
          return true;
        }
      }
    }
  }

  has(key) {
    for (let node of this.postOrderTraversal()) {
      if (node.key === key) return true;
    }
    return false;
  }

  find(key) {
    for (let node of this.postOrderTraversal()) {
      if (node.key === key) return node;
    }
    return undefined;
  }

  remove(key) {
    const node = this.find(key);
    if (!node) return false;
    const isRoot = node.parent === null;
    const isLeftChild = !isRoot ? node.parent.left === node : false;
    const hasBothChildren = node.left !== null && node.right !== null;

    if (node.isLeaf) {
      if (!isRoot) {
        if (isLeftChild) node.parent.left = null;
        else node.parent.right = null;
      } else {
        this.root = null;
      }
      return true;
    } else if (!hasBothChildren) {
      const child = node.left !== null ? node.left : node.right;
      if (!isRoot) {
        if (isLeftChild) node.parent.left = child;
        else node.parent.right = child;
      } else {
        this.root = child;
      }
      child.parent = node.parent;
      return true;
    } else {
      const rightmostLeft = [...this.inOrderTraversal(node.left)].slice(-1)[0];
      rightmostLeft.parent = node.parent;
      if (!isRoot) {
        if (isLeftChild) node.parent.left = rightmostLeft;
        else node.parent.right = rightmostLeft;
      } else {
        this.root = rightmostLeft;
      }
      rightmostLeft.right = node.right;
      node.right.parent = rightmostLeft;
      return true;
    }
  }
}
const tree = new BinarySearchTree(30);

tree.insert(10);
tree.insert(15);
tree.insert(12);
tree.insert(40);
tree.insert(35);
tree.insert(50);

[...tree.preOrderTraversal()].map(x => x.value);
// [30, 10, 15, 12, 40, 35, 50]

[...tree.inOrderTraversal()].map(x => x.value);
// [10, 12, 15, 30, 35, 40, 50]

[...tree.postOrderTraversal()].map(x => x.value);
// [12, 15, 10, 35, 50, 40, 30]

tree.root.value;                // 30
tree.root.hasChildren;          // true

tree.find(12).isLeaf;           // true
tree.find(40).isLeaf;           // false
tree.find(50).parent.value;     // 40
tree.find(15).left.value;       // 12
tree.find(12).right;            // null

tree.remove(12);

[...tree.preOrderTraversal()].map(x => x.value);
// [30, 10, 15, 40, 35, 50]

tree.remove(10);

[...tree.preOrderTraversal()].map(v => ({
  key: v.key,
  parent: v.parent ? v.parent.key : null,
})); // [30, 15, 40, 35, 50]

tree.remove(40);

[...tree.preOrderTraversal()].map(x => x.value);
// [30, 15, 40, 35, 50]

tree.remove(30);

[...tree.preOrderTraversal()].map(x => x.value);
// [15, 35, 50]

More like this

Start typing a keyphrase to see matching articles.