Skip to content

Home

JavaScript Data Structures - Binary Tree

Definition

A binary tree is a data structure consisting of a set of linked nodes that represent a hierarchical tree structure. Each node is linked to others via parent-children relationship. Any given node can have at most two children (left and right). The first node in the binary tree is the root, whereas nodes without any children are the leaves.

JavaScript Binary Tree visualization

Each node in a binary tree data structure must have the following properties:

The main operations of a binary tree data structure are:

Implementation

class BinaryTreeNode {
  constructor(key, value = key, parent = null) {
    this.key = key;
    this.value = value;
    this.parent = parent;
    this.left = null;
    this.right = null;
  }

  get isLeaf() {
    return this.left === null && this.right === null;
  }

  get hasChildren() {
    return !this.isLeaf;
  }
}

class BinaryTree {
  constructor(key, value = key) {
    this.root = new BinaryTreeNode(key, value);
  }

  *inOrderTraversal(node = this.root) {
    if (node.left) yield* this.inOrderTraversal(node.left);
    yield node;
    if (node.right) yield* this.inOrderTraversal(node.right);
  }

  *postOrderTraversal(node = this.root) {
    if (node.left) yield* this.postOrderTraversal(node.left);
    if (node.right) yield* this.postOrderTraversal(node.right);
    yield node;
  }

  *preOrderTraversal(node = this.root) {
    yield node;
    if (node.left) yield* this.preOrderTraversal(node.left);
    if (node.right) yield* this.preOrderTraversal(node.right);
  }

  insert(
    parentNodeKey,
    key,
    value = key,
    { left, right } = { left: true, right: true }
  ) {
    for (let node of this.preOrderTraversal()) {
      if (node.key === parentNodeKey) {
        const canInsertLeft = left && node.left === null;
        const canInsertRight = right && node.right === null;
        if (!canInsertLeft && !canInsertRight) return false;
        if (canInsertLeft) {
          node.left = new BinaryTreeNode(key, value, node);
          return true;
        }
        if (canInsertRight) {
          node.right = new BinaryTreeNode(key, value, node);
          return true;
        }
      }
    }
    return false;
  }

  remove(key) {
    for (let node of this.preOrderTraversal()) {
      if (node.left.key === key) {
        node.left = null;
        return true;
      }
      if (node.right.key === key) {
        node.right = null;
        return true;
      }
    }
    return false;
  }

  find(key) {
    for (let node of this.preOrderTraversal()) {
      if (node.key === key) return node;
    }
    return undefined;
  }
}
const tree = new BinaryTree(1, 'AB');

tree.insert(1, 11, 'AC');
tree.insert(1, 12, 'BC');
tree.insert(12, 121, 'BG', { right: true });

[...tree.preOrderTraversal()].map(x => x.value);
// ['AB', 'AC', 'BC', 'BCG']

[...tree.inOrderTraversal()].map(x => x.value);
// ['AC', 'AB', 'BC', 'BG']

tree.root.value;                // 'AB'
tree.root.hasChildren;          // true

tree.find(12).isLeaf;           // false
tree.find(121).isLeaf;          // true
tree.find(121).parent.value;    // 'BC'
tree.find(12).left;             // null
tree.find(12).right.value;      // 'BG'

tree.remove(12);

[...tree.postOrderTraversal()].map(x => x.value);
// ['AC', 'AB']

More like this

Start typing a keyphrase to see matching articles.