JavaScript Data Structures - Binary Tree
Definition
A binary tree is a data structure consisting of a set of linked nodes that represent a hierarchical tree structure. Each node is linked to others via parent-children relationship. Any given node can have at most two children (left and right). The first node in the binary tree is the root, whereas nodes without any children are the leaves.
Each node in a binary tree data structure must have the following properties:
key
: The key of the nodevalue
: The value of the nodeparent
: The parent of the node (null
if there is none)left
: A pointer to the node's left child (null
if there is none)right
: A pointer to the node's right child (null
if there is none)
The main operations of a binary tree data structure are:
insert
: Inserts a node as a child of the given parent noderemove
: Removes a node and its children from the binary treefind
: Retrieves a given nodepreOrderTraversal
: Traverses the binary tree by recursively traversing each node followed by its childrenpostOrderTraversal
: Traverses the binary tree by recursively traversing each node's children followed by the nodeinOrderTraversal
: Traverses the binary tree by recursively traversing each node's left child, followed by the node, followed by its right child
Implementation
class BinaryTreeNode { constructor(key, value = key, parent = null) { this.key = key; this.value = value; this.parent = parent; this.left = null; this.right = null; } get isLeaf() { return this.left === null && this.right === null; } get hasChildren() { return !this.isLeaf; } } class BinaryTree { constructor(key, value = key) { this.root = new BinaryTreeNode(key, value); } *inOrderTraversal(node = this.root) { if (node.left) yield* this.inOrderTraversal(node.left); yield node; if (node.right) yield* this.inOrderTraversal(node.right); } *postOrderTraversal(node = this.root) { if (node.left) yield* this.postOrderTraversal(node.left); if (node.right) yield* this.postOrderTraversal(node.right); yield node; } *preOrderTraversal(node = this.root) { yield node; if (node.left) yield* this.preOrderTraversal(node.left); if (node.right) yield* this.preOrderTraversal(node.right); } insert( parentNodeKey, key, value = key, { left, right } = { left: true, right: true } ) { for (let node of this.preOrderTraversal()) { if (node.key === parentNodeKey) { const canInsertLeft = left && node.left === null; const canInsertRight = right && node.right === null; if (!canInsertLeft && !canInsertRight) return false; if (canInsertLeft) { node.left = new BinaryTreeNode(key, value, node); return true; } if (canInsertRight) { node.right = new BinaryTreeNode(key, value, node); return true; } } } return false; } remove(key) { for (let node of this.preOrderTraversal()) { if (node.left.key === key) { node.left = null; return true; } if (node.right.key === key) { node.right = null; return true; } } return false; } find(key) { for (let node of this.preOrderTraversal()) { if (node.key === key) return node; } return undefined; } }
- Create a
class
for theBinaryTreeNode
with aconstructor
that initializes the appropriatekey
,value
,parent
,left
andright
properties. - Define an
isLeaf
getter, that usesArray.prototype.length
to check if bothleft
andright
are empty. - Define a
hasChildren
getter, that is the reverse of theisLeaf
getter. - Create a
class
for theBinaryTree
with aconstructor
that initializes theroot
of the binary tree. - Define a
preOrderTraversal()
generator method that traverses the binary tree in pre-order, using theyield*
syntax to recursively delegate traversal to itself. - Define a
postOrderTraversal()
generator method that traverses the binary tree in post-order, using theyield*
syntax to recursively delegate traversal to itself. - Define a
inOrderTraversal()
generator method that traverses the binary tree in in-order, using theyield*
syntax to recursively delegate traversal to itself. - Define an
insert()
method, that uses thepreOrderTraversal()
method to find the given parent node and insert a new childBinaryTreeNode
either as theleft
orright
child, depending on the passed options object. - Define a
remove()
method, that uses thepreOrderTraversal()
method andArray.prototype.filter()
to remove aBinaryTreeNode
from the binary tree. - Define a
find()
method, that uses thepreOrderTraversal()
method to retrieve the given node in the binary tree.
const tree = new BinaryTree(1, 'AB'); tree.insert(1, 11, 'AC'); tree.insert(1, 12, 'BC'); tree.insert(12, 121, 'BG', { right: true }); [...tree.preOrderTraversal()].map(x => x.value); // ['AB', 'AC', 'BC', 'BCG'] [...tree.inOrderTraversal()].map(x => x.value); // ['AC', 'AB', 'BC', 'BG'] tree.root.value; // 'AB' tree.root.hasChildren; // true tree.find(12).isLeaf; // false tree.find(121).isLeaf; // true tree.find(121).parent.value; // 'BC' tree.find(12).left; // null tree.find(12).right.value; // 'BG' tree.remove(12); [...tree.postOrderTraversal()].map(x => x.value); // ['AC', 'AB']